
ht. 1. Heat Mars Tmuferr. Vol. 12, pp. 803409. Pergamon Press 1969. Printed in Great Britain 

AN ANALYTICAL SOLUTION FOR SOLIDIFICATION 

OF A MOVING WARM LIQUID ONTO AN 

ISOTHERMAL COLD WALL 

JOSEPH M. SAVINO and ROBERT SIEGEL 

Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio 

(Received 1 August 1968 and in revisedform 21 November 1968) 

Abstract-Successive solutions for the instantaneous frozen layer thickness and temperature profile in the 
solidified layer were generated by an analytical iteration technique. Each iteration was more accurate than 
the preceding one and the succession of solutions converged rapidly. Analytical expressions obtained were of 

a simple form and agreed with numerical and approximate solutions of other investigators. 

NOMENCLATURE 

specific heat ; 
integral defined in equation (9) ; 
convective heat transfer coefficient ; 
integrals defined in equation (8) ; 
thermal conductivity of solidified 
material ; 
latent heat of fusion ; 
dimensionless parameter, cp(tf - t,)/L ; 
temperature ; 
dimensionless temperature, (t - tf)/ 

(L - tf); 
position coordinate in frozen layer mea- 
sured from wall ; 
dimensionless coordinate, x/6, ; 
dimensionless frozen layer thickness, 

W, ; 
thickness of frozen layer ; 
thickness of frozen layer at steady state ; 
dimensionless time, Oh& - t,.)/pLG,; 
time from start of solidification ; 
dimensionless coordinate, x/6 ; 
density. 

Subscripts 
X at freezing temperature ; 

1, liquid phase of solidifying material ; 

s, steady state ; 

W, wall ; 
I, II, III, IV, successive iterative approxima- 

tions. 

INTRODUCTION 

AN ANALYTICAL solution is presented for the type 
of moving boundary transient heat conduction 
problem encountered in the freezing of a liquid. 
Finding a solution for the frozen layer thickness 
variation with time is usually very difficult 
because of the nonlinear mathematical complexi- 
ties introduced by the presence of the moving 
interface. For this reason only a few exact 
analytical solutions have been found, Carslaw 
and Jaeger [l]. Because of the many practical 
situations involving melting and freezing, the 
search continues for analytical solutions of a 
reasonably simple form. 

This work is a continuation of the studies we 
reported in [2-4]. In those references an analyti- 
cal method was developed and applied to the 
general problem of a warm flowing liquid 
freezing onto a plane wall that is convectively 
cooled on the opposite side. A relation for the 
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frozen layer thickness as a function of time was 
found in the form of an integral equation that 
was solved by analytical iterations. A limiting 
case of the general solution is when the frozen 
layer is formed on a wall at constant tempera- 
ture. This case is considered here, and it was 
possible to carry out four iterations as closed 
form analytical expressions. The third and fourth 
iterations converged to within 1 percent of each 
other so that they closely represent the exact 
solution. 

Results on this problem have been published 
only in recent years. Libby and Chen [S] pre- 
sented a numerical solution and some approxi- 
mate analytical solutions that are valid near 
the beginning and end of the growth period. 
Lapadula and Mueller [6] developed a simple 
approximate analytical solution by use of a 
variational method. Beaubouef and Chapman 
[‘?I obtained some numerical solutions. The 

results of these references are used for compari- 
son with those derived in this paper. 

An important and useful fact is that the 
flowing liquid supplies a constant convective 
heat flux $(t, - ts) to the frozen interface at all 
times after the frozen layer is formed. From a 
heat balance at steady state h,(tl - tf) = k(t, - 
t,)/&, the thickness 6, is calculated which is 
used as a reference length 

To determine the frozen layer growth and 
tem~raturedistribution,~ginwith~etransient 
one-dimensional heat conduction equation 

kg= &KP$ (2) 

and integrate from x to 6 : 

Substitute the boundary condition at x = 6 
which is 

ANALYSIS 

The model analyzed is shown in Fig. 1. A liquid kg = hl(tl - tf) + PL$ (4) 
at a fixed bulk temperature t, above its freezing d 

point tf flows over a cold wall held at constant 
temperature t, < tf for 6 > 0. A frozen layer 

and equation (3) becomes 
d 

forms on the wall and grows to a steady thickness 
6,. The liquid-solid interface is taken to always be 

k ; 
x 

= pL $ + h,(t, - tf) - pc, 
s 

$dx. (5) 

at tf as was experimentally demonstrated in 131. I 

It is assumed that the frozen layer properties Integrating equation (5) from x = 0 to x and 
and the convective heat transfer coefficient rearranging provides an expression for the tem- 
remain constant with time. perature distribution, 

FIG. 

X:0 I =‘&@ 
1. Frozen layer formation on wall at constant tem- 

perature. 

,oL d6 
t(x, 0) = t, + kd7j- x + ; @I - t& 

x6 

PCP -- 
k ss $j dxdx 

OX 

which can be placed in dimensionless form 

XA 

dA 
T=l-X-Xds-S g dXdX. 

(6) 

(7) 
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By applying the rules for differentiating an 
integral, as shown in [2], to remove the derivative 
from under the integral sign and using the 
relation 131(X, @)/a@ = (dA/d@)[aI(X, A)/aA)] 
equation (7) can be written as 

(8) 

where 

I(X,A)=iXTdX+XfTdX. 
0 X 

By letting X = A in equation (8) and noting 
that T(A) = 0 the equation for the growth rate 
is obtained, 

dA 1-A 
-= 
d@ A + S(dG/dA) (9) 

where 

G(A) = I(X = A, A) = jXTdX. 
0 

Integrating equation (9) using the initial con- 
dition A = 0 when 0 = 0 results in 

A 

0 = -A - ln(l - A) + S 
s 

ZdA. (10) 

0 

Equation (8) is now changed by eliminating 
dA/dO with equation (9) to obtain 

T=l-X-(1-A) 
X + S(c%/iYA) 

A + S(dG/dA) ’ 
(11) 

Equation (11) is a complicated integral equation 
for the temperature distribution in the frozen 
layer. If it could be solved for T(X, A), then G(A) 
could be evaluated and the integral of equation 
(10) found to relate A and 0 explictly. 

Equations (10) and (11) are now solved by an 
analytical iteration procedure. A first order 
approximation for O(A) and T(X, A) is obtained 
by neglecting the heat capacity, that is by letting 
S = 0 in equations (10) and (11) 

0, = -A - hi(1 - A) (124 

(12b) 

Then equation (12b) is used to derive I,(X, A) 
and G,(A) for use in equations (10) and (11) to 
obtain the second analytical iteration O,,(A) 
and TJX, A): 

[-A - ln(1 - A)] (134 

.(l - A). (13b) 

This procedure is repeated. Each successive 
iteration is used to generate a more exact 
approximation until a converged solution is 
obtained or until the equations become too 
unwieldly to manipulate. 

For this problem we were able to generate 
four successive iterations. Having outlined the 
method used, the third and fourth iterations 
are given in their final form without taking space 
for the intermediate mathematical manipula- 
tions. 

o =3+2S+$S2 
II1 3+s 

[-A - ln(1 - A)] 

S2 A2 --- 
3+SlO 

T,,, = 1 - <A - 
(1 - A)(3 + S) 

1 
5 [l + S(l - 41 + & 

[C 
<A -3+6A 
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25 345 225 ----~ -- 
2s 14s2 14s3 

+S2A+3+2S-JM 

+S2A+3+2S+@ 

3+2S-JM 

3+2S+jM 

whereM=!?+12S+~S”+~S’+&S’ 

z&(X, A) = 1 - <A - (1 - A) 

where 

G,I 1-A 

--=A-A2-3+2S+(S2/5)(1+A) dA [ ( 
24 1 +;S+&S’) +&S2Azj 

(154 

(15b) 

+ 

3 + 2S + (2S2/5) 

[3 + 2S + (S2/5) (1 + A)]’ il i 
A2 l+;S+&S2)+&2A3j 

g! = (1 _ A)rA _ (1 - A) 

[ ( 

9 11 7 

2[3 + 2S + (S2/5) (1 + A)] 
cfA 3+4S+40S2+15S2A 

! 

+<3A(l+~+;)-~sA(~S+~S~ +6’d’(&;5)] 

+ 

3 + 2s + 3s’ 

?[3 + 2S + (S2/5) (1 + A)12 ii I( 
9 

(A A 3 + 4 ’ + 40 ’ 
I1 ‘) + $S2Ag 

-pAf+ ~+~S+~)+~~I+E’~‘[~+~~]+~:A~[-~+~]~. 
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As will be shown in the following section, the 
8,&l) and IT;,, are converged, and it is unneces- 
sary to carry out additional iterations. 

RESULTS AND DISCUSSION 

Comparison of solutions 
Here the successive iterations are compared 

with each other, and the converged solution is 
compared with the results of other investigators. 
In Fig. 2 are shown the temperature distri- 
butions in the frozen layer for various values 
of A and S = 5 which provides a very large heat 
capacity effect. The ?;,, and T,, curves are very 
close to each other ; their calculated values deviate 
only slightly in the third significant figure. 

Similarly, Fig. 3 displays the relation between 
A and 0 for values of the subcooling parameter 
S = 0, 1.0,3.0, and 5.0. As with the temperature 
distribution, 0 iti and 0 ,v are extremely close 
to each other, and can be considered converged. 
The simplicity in the forms for On, and &, 
equations (14a) and (b), makes them quite useful 
for practical applications. Because the simple 
second iterative solution deviates at most by 
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all T solutions 

I I I I I 
0 02 0.4 0.6 0.6 IO 

Normalized porltion within the instantaneous fmxen layer. (=x/8 

FIG. 2. Comparison of temperature distributions in frozen 
layer computed by each successive approximate solution 

for two fractional thicknesses, S = 5. 

2 per cent from the converged solution, it is also 
useful for practical problems. 

A comparison is made in Fig. 4 with the 
results of Libby and Chen [5], Lapadula and 

9 = -A- Cn(l-A) 

g= (I+:) [-A-h(i-A)] 

[-A-cnt I-A,] - $- $ 

@&see equation ( 1%) of text) 

I I I I I I I I L 
0 I 2 3 4 5 6 7 8 

Dimensionlea time, @=h,(t,-$)e/@, 

FIG. 3. Comparison of successive analytically iterated solutions for predicting instantaneous thickness 
of frozen layer. 
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FIG. 4. Compa~~n of present converged solution with results of other investigators. 
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R&m&-Des solutions successives pour l’epaisseur instantan& de la couche gelee et le profil de vitesse 
dam la eouche solid&e foumies par une technique d’iteration analytique. Chaque iteration Ctait 
plus precise que la pr&dente et la succession des solutions convergeait rapidement. Les expressions 
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d’autres chercheurs. 
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Zusammenfassung-Losungsfolgen fiir die augenblickliche Dicke einer gefrorenen Schicht und Tempera- 
turprofile in der ve~esti~en Schicht liessen sich nach einer anal~~h~ Itemtionst~~~ angeben. Jede 
iteration war genauer als die vorhergehende und die Liisungsfolgen konvergierten sehr rasch. Dier erhaltenen 
Ausdrticke waren von einfacher Form und stimmten i&rein mit numerischen und angenlherten Liisungen 

anderer Autoren. 

AEHOT~~BUF-C nohioiqbro MeTona MTepaqm rIonysem nocnegosaTenmme pememm ~JIH 

MFHOBeHHOfi T~JIUIIHH sahiepsrrrero CJIOR II TeMnepaTypHoro npo@sm B OTBep~emIeM cnoe. 

ICaHigaR ~oc~e~~~a~ arepaqm ~po~33o~~~acb TaaTenbHee ~pe~~~y~e~, II nome- 

AOBaTejIbHOCTb pelLleH%ii 6blCTpo CXO;qHJtaCb. nOJIyqeHbI EIpOCTbD? IlO ~OpMe-aH3~~TUYeCK~e 

BbIpa)KeHMf%, KOTOpbIe COl'JIaCyIoTCfl C WICJIeHHbIMW EI IIpHfkUKeHHbIMI5 pbWIf2HMJlMkl JQlj’rkfX 


